MRS

 MRS 




Picture: Magnetic Resonance Spectroscopy.


Magnetic Resonance Spectroscopy (MRS) indications primarily include neurological disorders, particularly brain tumors, abscesses, and metabolic or degenerative diseases, to help differentiate between them or assess disease progression. Other common indications are in evaluating HIV-related encephalopathytraumatic brain injury, and monitoring treatment response. 
Neurological disorders
  • Brain tumors: To help differentiate between different types of tumors (e.g., high-grade vs. low-grade), tumors from non-neoplastic lesions like infection or inflammation, or to assess treatment response by distinguishing between tumor recurrence and radiation necrosis.
  • Intracranial abscesses: Helps differentiate them from other space-occupying lesions like tumors.
  • Stroke: To assess the metabolic changes in areas of stroke.
  • Multiple sclerosis (MS): To study the metabolic changes associated with the disease. 
Metabolic and other neurological conditions 
  • HIV-related encephalopathy: To help in diagnosis, differential diagnosis, and follow-up of the patient's response to therapy.
  • Metabolic diseases: To identify metabolic abnormalities.
  • Traumatic brain injury (TBI): To evaluate acute changes in brain metabolites after injury, especially in mild TBI.
  • Neonatal encephalopathy: To provide additional information about the nature and prognosis of brain injury. 
Other organ systems

  • Liver diseases: To help differentiate liver tissue from neoplastic lesions.
  • Prostate cancer: Investigated for its potential role in diagnosis and staging. 


ম্যাগনেটিক রেজোন্যান্স স্পেকট্রোস্কোপি (এমআরএস) এর ইঙ্গিতগুলির মধ্যে প্রাথমিকভাবে স্নায়বিক ব্যাধি, বিশেষ করে মস্তিষ্কের টিউমার, ফোড়া এবং বিপাকীয় বা অবক্ষয়জনিত রোগঅন্তর্ভুক্ত থাকে , যা তাদের মধ্যে পার্থক্য করতে বা রোগের অগ্রগতি মূল্যায়ন করতে সহায়তা করে। অন্যান্য সাধারণ ইঙ্গিতগুলি হল এইচআইভি-সম্পর্কিত এনসেফালোপ্যাথিআঘাতজনিত মস্তিষ্কের আঘাতএবং চিকিৎসার প্রতিক্রিয়া পর্যবেক্ষণ করা। 
স্নায়বিক ব্যাধি
  • মস্তিষ্কের টিউমার: বিভিন্ন ধরণের টিউমারের (যেমন, উচ্চ-গ্রেড বনাম নিম্ন-গ্রেড), সংক্রমণ বা প্রদাহের মতো নন-নিওপ্লাস্টিক ক্ষত থেকে টিউমারের মধ্যে পার্থক্য করতে সাহায্য করার জন্য, অথবা টিউমার পুনরাবৃত্তি এবং বিকিরণ নেক্রোসিসের মধ্যে পার্থক্য করে চিকিৎসার প্রতিক্রিয়া মূল্যায়ন করার জন্য।
  • ইন্ট্রাক্রানিয়াল ফোড়া: টিউমারের মতো অন্যান্য স্থান দখলকারী ক্ষত থেকে তাদের আলাদা করতে সাহায্য করে।
  • স্ট্রোক: স্ট্রোকের ক্ষেত্রগুলিতে বিপাকীয় পরিবর্তনগুলি মূল্যায়ন করা।
  • মাল্টিপল স্ক্লেরোসিস (এমএস): রোগের সাথে সম্পর্কিত বিপাকীয় পরিবর্তনগুলি অধ্যয়ন করা। 
বিপাকীয় এবং অন্যান্য স্নায়বিক অবস্থা 
  • এইচআইভি-সম্পর্কিত এনসেফালোপ্যাথি: রোগ নির্ণয়, ডিফারেনশিয়াল ডায়াগনসিস এবং থেরাপির প্রতি রোগীর প্রতিক্রিয়ার ফলো-আপে সহায়তা করার জন্য।
  • বিপাকীয় রোগ: বিপাকীয় অস্বাভাবিকতা সনাক্তকরণের জন্য।
  • আঘাতজনিত মস্তিষ্কের আঘাত (টিবিআই): আঘাতের পরে মস্তিষ্কের বিপাকের তীব্র পরিবর্তন মূল্যায়ন করা, বিশেষ করে হালকা টিবিআইতে।
  • নবজাতক এনসেফালোপ্যাথি: মস্তিষ্কের আঘাতের প্রকৃতি এবং পূর্বাভাস সম্পর্কে অতিরিক্ত তথ্য প্রদান করা। 
অন্যান্য অঙ্গ সিস্টেম

  • লিভারের রোগ: লিভারের টিস্যুকে নিওপ্লাস্টিক ক্ষত থেকে আলাদা করতে সাহায্য করার জন্য।
  • প্রোস্টেট ক্যান্সার: রোগ নির্ণয় এবং পর্যায়ক্রমে এর সম্ভাব্য ভূমিকার জন্য তদন্ত করা হয়েছে। 



"Mrs. brain" most likely refers to Magnetic Resonance Spectroscopy (MRS), a non-invasive medical test used to measure the brain's metabolic activity and chemical compositionIt is often used alongside Magnetic Resonance Imaging (MRI) to help diagnose brain disorders like tumors, strokes, and epilepsy by identifying biochemical changes in brain tissue.  

"এমআরএস ব্রেন" বলতে সম্ভবত ম্যাগনেটিক রেজোন্যান্স স্পেকট্রোস্কোপি (এমআরএস) বোঝায়, যা মস্তিষ্কের বিপাকীয় কার্যকলাপ এবং রাসায়নিক গঠন পরিমাপ করার জন্য ব্যবহৃত একটি অ-আক্রমণাত্মক চিকিৎসা পরীক্ষা। মস্তিষ্কের টিস্যুতে জৈব রাসায়নিক পরিবর্তন সনাক্ত করে টিউমার, স্ট্রোক এবং মৃগীরোগের মতো মস্তিষ্কের ব্যাধি নির্ণয়ে সহায়তা করার জন্য এটি প্রায়শই ম্যাগনেটিক রেজোন্যান্স ইমেজিং (MRI) এর পাশাপাশি ব্যবহৃত হয়।  
How MRS works
  • Identifies metabolites
    MRS is performed on the same machine as an MRI, but it analyzes the chemical signals (metabolites) in a specific area of the brain. 
  • Compares tissue
    It compares the chemical composition of a suspicious area, like a tumor, with that of normal brain tissue. 
  • Provides a "virtual biopsy"
    The test is sometimes described as a "virtual biopsy" because it can provide detailed information about tissue without needing a surgical procedure. 
What it's used for
  • Tumor diagnosis
    MRS can help differentiate between types of brain tumors and determine their grade or aggressiveness. 
  • Monitoring therapy
    It can be used to assess the effectiveness of treatments for brain conditions. 
  • Other conditions
    It is also used to evaluate changes associated with strokes, seizure disorders, and neurodegenerative diseases like Alzheimer's. 
What to expect during the test

  • You will lie still in an MRI scanner, similar to a standard MRI.
  • You will be asked to avoid caffeine beforehand and remove all metal jewelry.
  • You may be given an injection of contrast dye to enhance the images. 


PREPARATION

  1. MRI, CT Scan Report with Films.
  2. Blood for Serum Creatinine for Contrast.
  3. Histopathology Report.
  4. Operation Note.


PROTOCOL (Philips)

  1. Survey
  2. T2W_TSE-----------------SAG
  3. T2W_TSE-----------------COR
  4. T2W_TSE-----------------TRA
  5. MV_PRESS_144---------MV
  6. MV_PRESS_288---------MV



INDICATION

Magnetic resonance spectroscopy (MRS), also known as nuclear magnetic resonance (NMR) spectroscopy, is a non-invasive analytical technique that has been used to study metabolic changes in brain tumors, strokes, seizure disorders, Alzheimer's disease, depression and other diseases affecting the brain.



BRAIN SPECTRA

What do the peaks seen in routine brain MRS represent? 


Picture: Normal brain ¹H spectrum at short TE



Picture: Normal brain ¹H spectrum at short TE (35 ms) shows characteristic peaks described below


Three major ¹H spectral peaks are consistently identified in the normal brain at 1.5T and 3.0T: NAA (N-acetyl aspartate), Cr (creatine), and Cho (choline). When relatively short echo times are used, peaks for mI (myo-inositol) and Glx (glutamate/ glutamine) may be seen. Lac (lactate) is not present in the normal adult brain but may be identified in neonates. Broad peaks due to mobile lipids (Lip) and macromolecules (MM) are also a well recognized feature of spectra obtained at short TE values.  ​At very high fields (≥7.0T) and in certain diseases small additional peaks may be identified, described in the Advanced Discussion.           

A brief summary of the commonly seen major brain metabolites and their principal spectral peaks is provided below. Although each metabolite has several chemically distinct ¹H nuclei contributing to the spectrum, usually only one (or two) of these are large enough to be detected in clinical MR studies.  


1. N-acetyl aspartate (NAA)

  • Tallest peak in spectrum (δ = 2.0)
  • Present primarily in neurons – a marker of neuronal density and viability
  • Decreased in any disease that destroys neurons (stroke, MS, tumor, dementia, epilepsy)
  • Metastatic and non-neural neoplasms (meningiomas) do not contain NAA
  • Elevated in Canavan's disease


Picture: N-acetyl aspartate (NAA)


2. Creatine (Cr)

  • Two peaks (at δ = 3.0 and 3.9, corresponding to blue and red hydrogens, respectively)
  • Peak includes both Creatine (Cr) and Phosphocreatine (PCr), involved in energy metabolism
  • PCr + ADP ↔ ATP + Cr
  • Produced in liver and transported to brain where its level is relatively constant; serves as internal standard
  • Decreased in most brain diseases; absent in metastases

Picture: Creatine (Cr)


3. Choline (Cho)

  • 3rd tallest peak (δ = 3.2)
  • Includes dominant contributions from phosphorylcholine and glycerophosphorylcholine; free Cho content is low in normal brain
  • Major constituents of cell membranes 
  • Elevated in diseases with high membrane turnover (ischemia, demyelination, tumors, inflammation)
  • Especially elevated in malignancy, where Cho/Cr ratio may be inverted



Picture: Choline (Cho)



4. Myo-inositol (mI)

  •  Several multiplet peaks, largest near δ = 3.6; isomer scyllo-inositol (sI) is small singlet at 3.3 ppm
  • Glucose-like metabolite found principally in astrocytes; regulates cellular volume
  • Due to short T2, best seen on short TE studies
  • Elevated in neonates, gliosis, acute demyelination, schwannomas, tuberous sclerosis, cortical dysplasias
  • Decreased in any chronic process destroying astrocytes (ischemia, neoplasm, demyelination)


Picture: Myo-inositol (mI)


5. Glutamate/Glutamine (Glx)

  • Glutamate (Glu) is shown. For Glutamine (Gln) the left O− is replaced by NH2    Glutamate (Glu) is the major excitatory neurotransmitter released by neurons
  • Nearby astrocytes take up glutamate, converting it to glutamine (Gln) which is recycled to the neuron for reprocessing into glutamate
  • Glutamate and glutamine resonate closely together, their summed peak called Glx and assigned to δ ≈ 2.3
  • Increased in hepatic encephalopathy and many acute brain diseases (stroke, demyelination, epilepsy) 


Picture: Glutamate/Glutamine (Glx)


6. Lactate (Lac)

  • Peak at δ = 1.3, characteristic doublet that is upright at TE = 30 and 288 ms, but inverted at TE = 144 ms
  • Not present in normal brain (except neonates)
  • Product of anaerobic metabolism
  • Elevated in ischemia/infarction (hypoxia), in tumors (glycolysis and increased oxygen demand), and spectral "contamination" by CSF (which normally contains Lac)


Picture: Lactate (Lac)




7. Lipids (Lip)

  • Signals arise from mobile tissue triglycerides and free fatty acids 
  • Two broad peaks at δ = 0.9 ppm (−CH3) and 1.3 ppm (−CH2−), best seen on short TE spectra
  • Increased in wide range of destructive cellular processes (necrosis, inflammation, malignancy)
  • Macrophages often contain high Lip concentrations


Picture: Lipids (Lip)


8. Macromolecules (MM)

  • At least 40 short but wide overlapping peaks, the largest in bands between δ = 0.9−2.2 and 3.7−4.2 ppm
  • Due to very short T2 values seen only at short TE's and contribute undulation in spectral baseline
  • Responsible metabolites not fully identified, but thought to arise from amino acid residues in >3500 Da proteins and polypeptides of brain cytosol
  • MM peak elevated in any disease that injures brain cells


Picture: Macromolecules (MM)

 

Less Commonly Observed Brain Specta

Alanine (Ala) is a small amino acid whose major spectral peak is a doublet from its methyl group at 1.46 ppm. This doublet overlaps with the lactate doublet, and like lactate, inverts at intermediate TE values (~144 ms). Ala also has a second smaller peak at 3.77 ppm. Ala levels may be elevated in meningiomas, central neurocytomas, and primitive neuroectodermal (PNET) tumors. Elevations are also reported in demyelination and bacterial abscesses.

Acetate (Ac), the anion of acetic acid, commonly accumulates in bacterial abscesses due to enhanced glycolysis and fermentation by the infecting organism. It produces a singlet peak at 1.91 ppm. Acetate is also elevated in the in Canavan's disease due to deficiency of the enzyme aspartoacyclase.

Branched Chain Amino Acids (leucine, isoleucine, valine) may be identified in patients with various inborn errors of metabolism such as maple syrup urine disease. They are also seen in pyogenic and fungal (but not tuberculous) abscesses. Their principal multiplet peaks lie in the 0.9 – 1.0 range and may invert when intermediate TE values (~144 ms) are used.

Ethanol, the primary ingredient in alcoholic beverages, may be detected in intoxicated patients, characterized by its main triplet peak at 1.19 ppm.

GABA (γ-aminobutyric acid) is the principal inhibitory neurotransmitter in the central nervous system. It has three relatively equal-sized peaks at 1.90, 2.30, and 3.02 ppm. Due to its low concentration compared to other more prominent overlapping (NAA and Cho) peaks, special MRS methods such as spectral editing are needed to identify and resolve GABA resonances.

Galactose, a monosaccharide sugar, and its metabolites galactitol and galactonate, have resonances around 3.7 that may be detected in patients with the inborn error of metabolism, galactosemia.

Glucose, the principal monosaccharide circulating as blood sugar, may be detected during extreme hyperglycemic states such as diabetic ketoacidosis. Principal resonances are at 3.43 and 3.8 ppm.

Glycine (Gly), the smallest the amino acids, has a primary resonance at 3.56 ppm. It is elevated in many brain tumors (glioblastomas, ependymomas, medulloblastomas) and is especially prominent in central neurocytomas. It may also be seen in the spectra of the brain and other organs in nonketotic hyperglycinemia (an inborn error of Gly metabolism).

2-Hydroxyglutarate (2-HG) accumulates in gliomas that have mutations in isocitrate dehydrogenase. Has a small doublet at 2.3 ppm that may be separated from background macromolecules, Glx, and GABA resonances by spectral editing.

Ketone bodies, including acetone (2.22 ppm), acetoacetate (2.26 and 3.46 ppm) and β-hydroxybutyrate (doublet peaks at 1.15 and 1.25 ppm) can be detected in patients on ketogenic diets and in those with diabetic ketoacidosis.

Mannitol, an exogenously administered sugar alcohol used for treatment of increased intracranial pressure and low output renal failure, produces a detectable peak at 3.8 ppm.

Phenylalanine, an aromatic amino acid, has its prominent resonances in the downfield part of the spectrum (i.e., to the left of water) in the 7.31-7.43 range, seen in the inborn error of metabolism, phenylketonuria.

Succinate, the anion of succinic acid, is a component of the citric acid cycle. Its singlet peak at 2.4 ppm is often seen together with that of acetate (1.9) and is a marker for anaerobic pyogenic infections as well as cysticercosis. Also elevated in rare enzyme defect succinate dehydrogenase deficiency.

Taurine, a ubiquitous amino-sulfonic acid, is inhibits neural transmission and stabilizes cell membranes. It has two peaks (one at 3.25 ppm, usually obscured by Cho) and a second at 3.42 ppm, just on the left shoulder of Cho. It is elevated in a wide range of disorders, but especially in primitive neuroectodermal tumors (PNET/medulloblastoma/retinoblastoma) and metastatic renal cell cancer.

Trehalose is a disaccharide synthesized by unicellular organisms, especially cryptococcus, seen in fungal abscesses. Spectrum has more than a dozen closely spaced peaks between 3.4 and 3.9 ppm


Peaks​

It is the Time of Echo (TE) that conditions the number of measurable metabolites: long TE (136-272 ms) vs short TE (10-50 ms) 7-8.

  1. lactate: resonates at 1.33 ppm
  2. lipids: resonates at 1.3 ppm
  3. alanine: resonates at 1.48 ppm
  4. N-acetylaspartate (NAA): resonates at 2.0 ppm
  5. glutamine/glutamate: resonates at 2.2-2.4 ppm 
  6. GABA: resonates at 2.2-2.4 ppm
  7. 2-hydroxyglutarate: resonates at 2.25 ppm 6
  8. citrate: resonates 2.6 ppm 
  9. creatine: resonates at 3.0 ppm
  10. choline: resonates at 3.2 ppm
  11. myo-inositol: resonates at 3.5 ppm
  12. water resonates at 4.7 ppm

 

Less common peaks

  1. propylene glycol: resonates at 1.14 ppm
  2. ethanol: resonates at 1.16 ppm
  3. acetate: resonates at 1.9 ppm
  4. acetone: resonates at 2.22 ppm
  5. acetoacetate: resonates at 2.29 ppm
  6. succinate: resonates at 2.4 ppm
  7. methylsulfonylmethane: resonates at 3.15 ppm
  8. scyllo-inositol: resonates at 3.36 ppm
  9. taurine: resonates at 3.4 ppm
  10. glucose: resonates at 3.43 ppm and 3.8 ppm
  11. mannitol: resonates at 3.78 ppm
  12. lactate quartet: resonates at 4.11 ppm

NB: ppm = parts per million

 

Related pathology

Glioma

MRS can help increase our ability to predict grade. As the grade increases, NAA and creatine decrease and choline, lipids and lactate increase. 

In the setting of gliomas, choline will be elevated beyond the margins of contrast enhancement in keeping with cellular infiltration.


Non-glial tumours 

May be difficult but in general non-glial tumours will have little, if any, NAA peak. 


Radiation effects 

Distinguishing radiation change and tumour recurrence can be problematic. In recurrent tumour choline will be elevated, whereas in radiation change, NAA, choline and creatine will all be low.


Ischaemia and infarction 

Lactate will increase as the brain switches to anaerobic metabolism. When infarction takes place then lipids are released and peaks appear.


Infection 

As in all processes which destroy normal brain tissue, NAA is absent. Within bacterial abscess cavities, lactate, alanine, cytosolic acid and acetate are elevated/present.

Of note choline is low or absent in toxoplasmosis, whereas it is elevated in lymphoma, helping to distinguish the two.


White matter diseases

progressive multifocal leukoencephalopathy (PML) may demonstrate elevated myoinositol

Canavan disease characteristically demonstrates elevated NAA


Hepatic encephalopathy 

Markedly reduced myoinositol, and to a lesser degree choline. Glutamine is increased.

Mitochondrial disorders

Leigh syndrome: elevated choline, reduced NAA and occasionally elevated lactate

 

Mnemonic

  1. My ChoCrNaaLa (think of a new chocolate energy bar or something)
  2. My: Myo-inositol 3.5
  3. Cho: Choline 3.2
  4. Cr: Creatine 3.0
  5. Naa: Naa 2.0
  6. L: Lactate 1.3

History and etymology

MRS of intact biological tissues was first reported by two groups: Moon and Richards using P-31 MRS to examine intact red blood cells in 1973, and Hoult et al. using P-31 MRS to examine excised leg muscle from the rat in 1974. The first MR spectrum of a human brain in vivo was published in 1985 by Bottomley.




POST PROCESSING (PHILIPS)